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Nash-type inequalities (Coulhon, 96)

Theorem 1

For a strictly decreasing differentiable bijection ϕ of R+ satisfying condition (D),

define θ(r) = −ϕ′(ϕ−1(r)) for all r > 0. Let δ be a non-negative constant. Then

the following conditions are equivalent:

(i) There is a constant c1 > 0 such that

‖Pt‖1→∞ ≤ ϕ(c1t)e
δt for t > 0.

(ii) There is a constant c2 > 0 such that

c2 θ(‖f‖22) ≤ E(f, f) + δ‖f‖22 for f ∈ F with ‖f‖1 ≤ 1.

For instance, C1-functions f(t) that behave like t−δ1 for small t with δ1 > 0, and

e−c0t
δ2

for large t with c0, δ2 > 0 satisfy condition (D).

Jian Wang (Fujian Normal University) Heat kernel upper bounds July 16, 2021 2 / 14



Nash-type inequalities (Coulhon, 96)

Theorem 1

For a strictly decreasing differentiable bijection ϕ of R+ satisfying condition (D),

define θ(r) = −ϕ′(ϕ−1(r)) for all r > 0. Let δ be a non-negative constant. Then

the following conditions are equivalent:

(i) There is a constant c1 > 0 such that

‖Pt‖1→∞ ≤ ϕ(c1t)e
δt for t > 0.

(ii) There is a constant c2 > 0 such that

c2 θ(‖f‖22) ≤ E(f, f) + δ‖f‖22 for f ∈ F with ‖f‖1 ≤ 1.

For instance, C1-functions f(t) that behave like t−δ1 for small t with δ1 > 0, and

e−c0t
δ2

for large t with c0, δ2 > 0 satisfy condition (D).

Jian Wang (Fujian Normal University) Heat kernel upper bounds July 16, 2021 2 / 14



Functional inequalities (Davies, Coulhon, Wang)

• (Coulhon, 96) Nash-type inequalities

θ(‖f‖22) ≤ E(f, f) + δ‖f‖22 for f ∈ F with ‖f‖1 ≤ 1

with
∫ +∞

1/θ(s) ds <∞.

• (F.-Y. Wang, 00) super-Poincaré inequalities

‖f‖22 ≤ rE(f, f) + β(r)‖f‖21, f ∈ F , r > 0.

• (Davies, 87) super-logarithmic Sobolev inequality∫
f2 log

f2

‖f‖22
dm ≤ rE(f, f) + (log β(r))‖f‖22, f ∈ F , r > 0.

• E.B. Davies. Heat Kernels and Spectral Theory. Cambridge Univ. Press,

Cambridge, UK, 1989.
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Nash inequalities and off-diagonal heat kernel estimates

(Carlen-Kusuoka-Stroock, 87)

Theorem 2

Let ν > 0 and δ ≥ 0. The following statements are equivalent.

(i)

‖f‖2+4/ν
2 ≤ A(E(f, f) + δ‖f‖22)‖f‖4/ν1 for f ∈ F .

(ii) There is a constant Cν > 0 such that for all ε ∈ (0, 1), for all t > 0 and

x, y ∈ E \ N ,

p(t, x, y) ≤ Cν(A/(εt))ν/2eεδt exp
(
−|ψ(y)− ψ(x)|+ (1 + ε)Λ(ψ)2t

)
,

where

Λ(ψ)2 := max

{∥∥∥∥de−2ψΓ(eψ, eψ)

dm

∥∥∥∥
∞
,

∥∥∥∥de2ψΓ(e−ψ, e−ψ)

dm

∥∥∥∥
∞

}
<∞.
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Nash-type inequalities and off-diagonal heat kernel

estimates (Chen-Kim-Kumagai-W., 21)

Theorem 3

Let ϕ ∈ R and δ ≥ 0. The following statements are equivalent.

(i)

c1θ(c2‖f‖22) ≤ E(f, f) + δ‖f‖22 for f ∈ F with ‖f‖1 ≤ 1,

where θ(r) = −ϕ′(ϕ−1(r)) and c1, c2 are positive constants.

(ii) For any ε ∈ (0, 1) there are constants Cε, cε > 0 so that for all t > 0 and

x, y ∈ E \ N ,

p(t, x, y) ≤ Cε ϕ(cεt)e
δt exp

(
−|ψ(y)− ψ(x)|+ (1 + ε)Λ(ψ)2t

)
,

where

Λ(ψ)2 := max

{∥∥∥∥de−2ψΓ(eψ, eψ)

dm

∥∥∥∥
∞
,

∥∥∥∥de2ψΓ(e−ψ, e−ψ)

dm

∥∥∥∥
∞

}
<∞.
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Nash-type inequalities and off-diagonal heat kernel

estimates

•
p(t, x, y) ≤ Cε ϕ(cεt)e

δt exp
(
−|ψ(y)− ψ(x)|+ (1 + ε)Λ(ψ)2t

)
,

where

Λ(ψ)2 := max

{∥∥∥∥de−2ψΓ(eψ, eψ)

dm

∥∥∥∥
∞
,

∥∥∥∥de2ψΓ(e−ψ, e−ψ)

dm

∥∥∥∥
∞

}
<∞;

•
p(t, x, y) ≤ Cεϕ(cεt)e

δt exp

(
−dE(x, y)2

4(1 + ε)t

)
,

where

dE(x, y) := sup {ψ(x)− ψ(y) : ψ ∈ F ∩ Cb(E) with Λ(ψ) ≤ 1} .
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Remark

• ϕ(t) = c t−ν/2 and ϕ(t) = c
(
t−ν/21{t≤1} + t−µ/21{t>1}

)
for some constants

c > 0 and 0 < µ ≤ ν <∞. See Carlen-Kusuoka-Stroock (1987).

• ϕ ∈ R. Typical examples for regular functions on R+ are ϕ(r) = r−ν/2 with

ν > 0, or ϕ(r) = r−ν/2 with ν > 0 for small r > 0, and ϕ(r) = e−r
α

with

α ∈ (0, 1] for large r > 0. Indeed, for any decreasing function ϕ : R+ → R+ such

that ϕ(0) = ∞, ϕ(∞) = 0 and that 1/ϕ has the doubling property (i.e., there is

a constant c1 ≥ 1 such that 1/ϕ(2r) ≤ c1/ϕ(r) for all r > 0), we can find some

ϕ ∈ R and a constant c2 ≥ 1 so that c−12 ϕ(r) ≤ ϕ(r) ≤ c2ϕ(r) for all r ∈ R+.
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Remark

• Carlen-Kusuoka-Stroock (1987): in order to study off-diagonal heat kernel bounds

for (Pt)t≥0, we consider the perturbed semigroup (Pψt )t≥0 defined by

Pψt f(x) := eψ(x)Pt(e
−ψf)(x), t ≥ 0

for some nice function ψ ∈ Fb.

• Carlen-Kusuoka-Stroock (1987): The approach is based on differential inequali-

ties below, which seems to be specific to ϕ(t) of being c t−ν/2 considered there:

u′(t) ≤ −ε
p

(
t(p−2)/(βp)

w(t)

)βp
u1+βp(t) + λpu(t), t > 0

for some increasing function w(t) on (0,∞) and p > 2.

• On-diagonal heat kernel upper bounds for mixtures of symmetric stable-like pro-

cesses on Rd are of the form c4(Φ−1(t))d for some strictly increasing weighted func-

tion Φ which satisfies doubling and reverse doubling properties; see Chen-Kumagai

(2008).
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Applications

• Heat kernel for Brownian motion on a non-compact manifold with bounded

geometry; see Barlow-Coulhon-Grigor’yan (01).

• Heat kernel for Brownian motion on hyperbolic spaces and its subordination;

see Grigor’yan (94). This gives us a concrete example of symmetric jump process

whose heat kernel decays exponentially for large time; see Schilling-W. (02).

• Symmetric Lévy-like processes with general scaling functions; see Chen-Kumagai

(08), Mimica (12), Bae-Kang-Kim-Lee (19) and Chen-Kumagai-W. (19).
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Questions

• Carlen-Kusuoka-Stroock (1987): However, it is often important to work with a

discrete time parameter; and so in the present section we develop the discrete-time

analogs of the results in section 2. Unfortunately, we do not know how to extend

the results of section 3 to this setting.

• Heat kernel estimates for degenerate parabolic equations.

Example 1

let A(x) be a symmetric measurable matrix-valued function on Rd such that there

are some constants 0 < λ1 ≤ λ2 <∞ so that

λ1|ξ|2 ≤ A(x)ξ · ξ ≤ λ2|ξ|2 for every x, ξ ∈ Rd.

Let µ(dx) = ρ(x) dx with ρ > 0 so that ρ + ρ−1 ∈ L1
loc(Rd; dx). Consider the

following regular Dirichlet form (E ,F) on L2(Rd;µ):

E(f, f) =

∫
Rd
A(x)∇f(x) · ∇f(x)µ(dx), f ∈ F .
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Off-diagonal heat kernel estimates for large time

• The state space (X , ρ, µ) satisfies the VD and RVD conditions. Let φ be an in-

creasing function on [0,∞) with φ(0) = 0 and satisfying the weak scaling property.

• Let (E ,F) be a strongly local Dirichlet form on L2(X ;µ) so that

(i) (Faber-Krahn inequality) There exist constants c0, ν > 0 and R0 ≥ 0 such

that for any ball B := B(x0, R) with x0 ∈ X and R > R0 and for any open

set D ⊂ B,

λ1(D) ≥ c0
φ(R)

(
µ(B)

µ(D)

)ν
.

where λ1(D) is the principal Dirichlet eigenvalue.

(ii) There is a constant c∗ > 0 such that for any cut-off function ψ ∈ Fb for

B(x0, r) ⊂ B(x0, R) with x0 ∈ X and 0 < r < R µ-a.e. on X \B(x,R)),

dΓ(ψ,ψ)

dµ
≤ c∗
φ(R− r)

.
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Off-diagonal heat kernel estimates for large time

Theorem 4 (Chen and W., 21+)

Under the assumptions above, there exists a properly exceptional set N ⊂ X , and

the semigroup (Pt)t≥0 associated with (E ,F) has a transition density function

p(t, x, y) that is defined on (2T0,∞) × (X \ N ) × (X \ N ) with T0 := φ(2R0)

such that there is a constant c1 > 0 so that for all t > 2T0 and x, y ∈ X \ N ,

p(t, x, y) ≤ c1√
V (x, φ−1(t))V (y, φ−1(t))

(
1 +

dE(x, y)2

4t

)(1+ν)/ν

exp

(
−dE(x, y)2

4t

)
,

where

dE(x, y) := sup
{
ϕ(x)− ϕ(y) : ϕ ∈ F ∩ Cc(X ) with Λ(ϕ)2 ≤ 1

}
and

Λ(ϕ) :=

∥∥∥∥dΓ(ϕ,ϕ)

dµ

∥∥∥∥1/2
∞

.
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Thank you!
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