On heat kernel upper bounds for symmetric Markov semigroups

Jian Wang (Fujian Normal University)

16th Workshop on Markov Processes and Related Topics

Central South University

July 16, 2021

Heat kernel upper bounds

Theorem 1

For a strictly decreasing differentiable bijection φ of \mathbb{R}_+ satisfying condition (D), define $\theta(r) = -\varphi'(\varphi^{-1}(r))$ for all r > 0. Let δ be a non-negative constant. Then the following conditions are equivalent:

(i) There is a constant $c_1 > 0$ such that

$$\|P_t\|_{1\to\infty} \le \varphi(c_1 t) e^{\delta t} \quad \text{for } t > 0.$$

(ii) There is a constant $c_2 > 0$ such that

 $c_2 \, \theta(\|f\|_2^2) \le \mathcal{E}(f, f) + \delta \|f\|_2^2 \quad \text{for } f \in \mathcal{F} \text{ with } \|f\|_1 \le 1.$

For instance, C^1 -functions f(t) that behave like $t^{-\delta_1}$ for small t with $\delta_1 > 0$, and $e^{-c_0t^{\delta_2}}$ for large t with $c_0, \delta_2 > 0$ satisfy condition (D).

(日) (周) (三) (三)

Theorem 1

For a strictly decreasing differentiable bijection φ of \mathbb{R}_+ satisfying condition (D), define $\theta(r) = -\varphi'(\varphi^{-1}(r))$ for all r > 0. Let δ be a non-negative constant. Then the following conditions are equivalent:

(i) There is a constant $c_1 > 0$ such that

$$\|P_t\|_{1\to\infty} \le \varphi(c_1 t) e^{\delta t} \quad \text{for } t > 0.$$

(ii) There is a constant $c_2 > 0$ such that

 $c_2 \, \theta(\|f\|_2^2) \le \mathcal{E}(f, f) + \delta \|f\|_2^2$ for $f \in \mathcal{F}$ with $\|f\|_1 \le 1$.

For instance, C^1 -functions f(t) that behave like $t^{-\delta_1}$ for small t with $\delta_1 > 0$, and $e^{-c_0 t^{\delta_2}}$ for large t with $c_0, \delta_2 > 0$ satisfy condition (D).

Functional inequalities (Davies, Coulhon, Wang)

• (Coulhon, 96) Nash-type inequalities

 $\theta(\|f\|_{2}^{2}) < \mathcal{E}(f, f) + \delta \|f\|_{2}^{2}$ for $f \in \mathcal{F}$ with $\|f\|_{1} < 1$

with $\int_{0}^{+\infty} 1/\theta(s) \, ds < \infty$.

• (F.-Y. Wang, 00) super-Poincaré inequalities

$$||f||_2^2 \le r\mathcal{E}(f, f) + \beta(r)||f||_1^2, \quad f \in \mathcal{F}, r > 0.$$

• (Davies, 87) super-logarithmic Sobolev inequality

$$\int f^2 \log \frac{f^2}{\|f\|_2^2} \, dm \le r \mathcal{E}(f, f) + (\log \beta(r)) \|f\|_2^2, \quad f \in \mathcal{F}, r > 0.$$

• E.B. Davies. *Heat Kernels and Spectral Theory*. Cambridge Univ. Press, Jian Wang (Fujian Normal University)

Functional inequalities (Davies, Coulhon, Wang)

• (Coulhon, 96) Nash-type inequalities

 $\theta(\|f\|_2^2) < \mathcal{E}(f, f) + \delta \|f\|_2^2$ for $f \in \mathcal{F}$ with $\|f\|_1 < 1$

with $\int_{0}^{+\infty} 1/\theta(s) \, ds < \infty$.

• (F.-Y. Wang, 00) super-Poincaré inequalities

$$||f||_2^2 \le r\mathcal{E}(f, f) + \beta(r)||f||_1^2, \quad f \in \mathcal{F}, r > 0.$$

• (Davies, 87) super-logarithmic Sobolev inequality

$$\int f^2 \log \frac{f^2}{\|f\|_2^2} \, dm \le r \mathcal{E}(f, f) + (\log \beta(r)) \|f\|_2^2, \quad f \in \mathcal{F}, r > 0.$$

• E.B. Davies. *Heat Kernels and Spectral Theory*. Cambridge Univ. Press, Cambridge, UK, 1989. Jian Wang (Fujian Normal University)

Nash inequalities and off-diagonal heat kernel estimates (Carlen-Kusuoka-Stroock, 87)

Theorem 2

Let $\nu > 0$ and $\delta \ge 0$. The following statements are equivalent.

(i)
$$\|f\|_2^{2+4/\nu} \le A(\mathcal{E}(f,f) + \delta \|f\|_2^2) \|f\|_1^{4/\nu}$$
 for $f \in \mathcal{F}$.

(ii) There is a constant $C_{\nu} > 0$ such that for all $\varepsilon \in (0,1)$, for all t > 0 and $x, y \in E \setminus \mathcal{N}$,

$$p(t, x, y) \le C_{\nu} (A/(\varepsilon t))^{\nu/2} e^{\varepsilon \delta t} \exp\left(-|\psi(y) - \psi(x)| + (1+\varepsilon)\Lambda(\psi)^2 t\right),$$

where

$$\Lambda(\psi)^2 := \max\left\{ \left\| \frac{de^{-2\psi} \Gamma(e^{\psi}, e^{\psi})}{dm} \right\|_{\infty}, \ \left\| \frac{de^{2\psi} \Gamma(e^{-\psi}, e^{-\psi})}{dm} \right\|_{\infty} \right\} < \infty.$$

Nash-type inequalities and off-diagonal heat kernel estimates (Chen-Kim-Kumagai-W., 21)

Theorem 3

Let $\varphi \in \mathcal{R}$ and $\delta \geq 0$. The following statements are equivalent.

(i)

$$c_1\theta(c_2||f||_2^2) \leq \mathcal{E}(f,f) + \delta ||f||_2^2 \quad \text{for } f \in \mathcal{F} \text{ with } ||f||_1 \leq 1,$$
where $\theta(r) = -\varphi'(\varphi^{-1}(r))$ and c_1, c_2 are positive constants.

(ii) For any $\varepsilon \in (0,1)$ there are constants $C_{\varepsilon}, c_{\epsilon} > 0$ so that for all t > 0 and $x, y \in E \setminus \mathcal{N}$,

$$p(t, x, y) \leq C_{\varepsilon} \varphi(c_{\varepsilon} t) e^{\delta t} \exp\left(-|\psi(y) - \psi(x)| + (1 + \varepsilon)\Lambda(\psi)^2 t\right),$$

where

$$\Lambda(\psi)^2 := \max\left\{ \left\| \frac{de^{-2\psi} \Gamma(e^{\psi}, e^{\psi})}{dm} \right\|_{\infty}, \ \left\| \frac{de^{2\psi} \Gamma(e^{-\psi}, e^{-\psi})}{dm} \right\|_{\infty} \right\} < \infty.$$

Jian Wang (Fujian Normal University)

$$p(t, x, y) \le C_{\varepsilon} \, \varphi(c_{\varepsilon} t) e^{\delta t} \exp\left(-|\psi(y) - \psi(x)| + (1+\varepsilon)\Lambda(\psi)^2 t\right),$$

where

$$\begin{split} \Lambda(\psi)^2 &:= \max\left\{ \left\| \frac{de^{-2\psi} \Gamma(e^{\psi}, e^{\psi})}{dm} \right\|_{\infty}, \ \left\| \frac{de^{2\psi} \Gamma(e^{-\psi}, e^{-\psi})}{dm} \right\|_{\infty} \right\} < \infty; \\ p(t, x, y) &\leq C_{\varepsilon} \varphi(c_{\varepsilon} t) e^{\delta t} \, \exp\left(-\frac{d_{\varepsilon}(x, y)^2}{4(1+\varepsilon)t}\right), \end{split}$$

where

 $d_{\mathcal{E}}(x,y) := \sup \left\{ \psi(x) - \psi(y) : \psi \in \mathcal{F} \cap C_b(E) \text{ with } \Lambda(\psi) \le 1 \right\}$

$$p(t, x, y) \le C_{\varepsilon} \varphi(c_{\varepsilon} t) e^{\delta t} \exp\left(-|\psi(y) - \psi(x)| + (1 + \varepsilon)\Lambda(\psi)^2 t\right)$$

where

$$\Lambda(\psi)^{2} := \max\left\{ \left\| \frac{de^{-2\psi}\Gamma(e^{\psi}, e^{\psi})}{dm} \right\|_{\infty}, \ \left\| \frac{de^{2\psi}\Gamma(e^{-\psi}, e^{-\psi})}{dm} \right\|_{\infty} \right\} < \infty;$$
$$p(t, x, y) \le C_{\varepsilon}\varphi(c_{\varepsilon}t)e^{\delta t} \exp\left(-\frac{d_{\varepsilon}(x, y)^{2}}{4(1+\varepsilon)t}\right),$$

where

$$d_{\mathcal{E}}(x,y) := \sup \left\{ \psi(x) - \psi(y) : \ \psi \in \mathcal{F} \cap C_b(E) \text{ with } \Lambda(\psi) \leq 1 \right\}.$$

,

$$\Lambda(\psi)^{2} := \max\left\{ \left\| \frac{de^{-2\psi}\Gamma(e^{\psi}, e^{\psi})}{dm} \right\|_{\infty}, \left\| \frac{de^{2\psi}\Gamma(e^{-\psi}, e^{-\psi})}{dm} \right\|_{\infty} \right\} < \infty.$$
$$p(t, x, y) \le C_{\varepsilon}\varphi(c_{\varepsilon}t)e^{\delta t} \exp\left(-\frac{d_{\varepsilon}(x, y)^{2}}{4(1+\varepsilon)t}\right),$$

where

 $d_{\mathcal{E}}(x,y) := \sup \left\{ \psi(x) - \psi(y) : \ \psi \in \mathcal{F} \cap C_b(E) \text{ with } \Lambda(\psi) \leq 1 \right\}.$

• Strongly local Dirichlet forms: $d^*_{\mathcal{E}}(x,y)$ is the intrinsic distance induced by the Dirichlet form $(\mathcal{E},\mathcal{F})$, i.e.,

$$\begin{split} d^*_{\mathcal{E}}(x,y) &:= \sup \left\{ \psi(x) - \psi(y) : \ \psi \in \mathcal{F} \cap C_b(E) \text{ with } d\mathbb{I}_{\texttt{A}}(\psi, \mathcal{U}_{\texttt{A}}) / d\mathbb{I}_{\texttt{A}} \leq \mathbb{I}_{\texttt{A}} \right\} \text{ , so } \mathbb{Q} \\ \text{Jian Wang (Fujian Normal University)} & \text{Heat kernel upper bounds} & \text{July 16, 2021} & 7 / 14 \end{split}$$

$$\Lambda(\psi)^{2} := \max\left\{ \left\| \frac{de^{-2\psi}\Gamma(e^{\psi}, e^{\psi})}{dm} \right\|_{\infty}, \left\| \frac{de^{2\psi}\Gamma(e^{-\psi}, e^{-\psi})}{dm} \right\|_{\infty} \right\} < \infty.$$
$$p(t, x, y) \le C_{\varepsilon}\varphi(c_{\varepsilon}t)e^{\delta t} \exp\left(-\frac{d_{\varepsilon}(x, y)^{2}}{4(1+\varepsilon)t}\right),$$

where

$$d_{\mathcal{E}}(x,y) := \sup \left\{ \psi(x) - \psi(y) : \ \psi \in \mathcal{F} \cap C_b(E) \text{ with } \Lambda(\psi) \leq 1 \right\}.$$

• Strongly local Dirichlet forms: $d^*_{\mathcal{E}}(x,y)$ is the intrinsic distance induced by the Dirichlet form $(\mathcal{E},\mathcal{F})$, i.e.,

 $d_{\mathcal{E}}^*(x,y) := \sup \left\{ \psi(x) - \psi(y) : \psi \in \mathcal{F} \cap C_b(E) \text{ with } d\Gamma(\psi,\psi) / dm \leq 1 \right\}.$

• $\varphi(t) = c t^{-\nu/2}$ and $\varphi(t) = c \left(t^{-\nu/2} \mathbb{1}_{\{t \le 1\}} + t^{-\mu/2} \mathbb{1}_{\{t > 1\}}\right)$ for some constants c > 0 and $0 < \mu \le \nu < \infty$. See Carlen-Kusuoka-Stroock (1987).

• $\varphi \in \mathcal{R}$. Typical examples for regular functions on \mathbb{R}_+ are $\varphi(r) = r^{-\nu/2}$ with $\nu > 0$, or $\varphi(r) = r^{-\nu/2}$ with $\nu > 0$ for small r > 0, and $\varphi(r) = e^{-r^{\alpha}}$ with $\alpha \in (0,1]$ for large r > 0. Indeed, for any decreasing function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ such that $\varphi(0) = \infty$, $\varphi(\infty) = 0$ and that $1/\varphi$ has the doubling property (i.e., there is a constant $c_1 \ge 1$ such that $1/\varphi(2r) \le c_1/\varphi(r)$ for all r > 0), we can find some $\overline{\varphi} \in \mathcal{R}$ and a constant $c_2 \ge 1$ so that $c_2^{-1}\overline{\varphi}(r) \le \varphi(r) \le c_2\overline{\varphi}(r)$ for all $r \in \mathbb{R}_+$.

イロト イポト イヨト イヨト 二日

Remark

• Carlen-Kusuoka-Stroock (1987): in order to study off-diagonal heat kernel bounds for $(P_t)_{t\geq 0}$, we consider the perturbed semigroup $(P_t^{\psi})_{t\geq 0}$ defined by

$$P_t^{\psi} f(x) := e^{\psi(x)} P_t(e^{-\psi} f)(x), \quad t \ge 0$$

for some nice function $\psi \in \mathcal{F}_b$.

• Carlen-Kusuoka-Stroock (1987): The approach is based on differential inequalities below, which seems to be specific to $\varphi(t)$ of being $c t^{-\nu/2}$ considered there:

$$u'(t) \le -\frac{\varepsilon}{p} \left(\frac{t^{(p-2)/(\beta p)}}{w(t)}\right)^{\beta p} u^{1+\beta p}(t) + \lambda p u(t), \quad t > 0$$

for some increasing function w(t) on $(0,\infty)$ and p>2.

• On-diagonal heat kernel upper bounds for mixtures of symmetric stable-like processes on \mathbb{R}^d are of the form $c_4(\Phi^{-1}(t))^d$ for some strictly increasing weighted function Φ which satisfies doubling and reverse doubling properties; see Chen-Kumagai (2008).

Remark

• Carlen-Kusuoka-Stroock (1987): in order to study off-diagonal heat kernel bounds for $(P_t)_{t\geq 0}$, we consider the perturbed semigroup $(P_t^{\psi})_{t\geq 0}$ defined by

$$P_t^{\psi} f(x) := e^{\psi(x)} P_t(e^{-\psi} f)(x), \quad t \ge 0$$

for some nice function $\psi \in \mathcal{F}_b$.

• Carlen-Kusuoka-Stroock (1987): The approach is based on differential inequalities below, which seems to be specific to $\varphi(t)$ of being $c t^{-\nu/2}$ considered there:

$$u'(t) \le -\frac{\varepsilon}{p} \left(\frac{t^{(p-2)/(\beta p)}}{w(t)}\right)^{\beta p} u^{1+\beta p}(t) + \lambda p u(t), \quad t > 0$$

for some increasing function w(t) on $(0,\infty)$ and p>2.

• On-diagonal heat kernel upper bounds for mixtures of symmetric stable-like processes on \mathbb{R}^d are of the form $c_4(\Phi^{-1}(t))^d$ for some strictly increasing weighted function Φ which satisfies doubling and reverse doubling properties; see Chen-Kumagai (2008). • Heat kernel for Brownian motion on a non-compact manifold with bounded geometry; see Barlow-Coulhon-Grigor'yan (01).

• Heat kernel for Brownian motion on hyperbolic spaces and its subordination; see Grigor'yan (94). This gives us a concrete example of symmetric jump process whose heat kernel decays exponentially for large time; see Schilling-W. (02).

• Symmetric Lévy-like processes with general scaling functions; see Chen-Kumagai (08), Mimica (12), Bae-Kang-Kim-Lee (19) and Chen-Kumagai-W. (19).

Questions

• Carlen-Kusuoka-Stroock (1987): However, it is often important to work with a discrete time parameter; and so in the present section we develop the discrete-time analogs of the results in section 2. Unfortunately, we do not know how to extend the results of section 3 to this setting.

• Heat kernel estimates for degenerate parabolic equations.

Example 1

let A(x) be a symmetric measurable matrix-valued function on \mathbb{R}^d such that there are some constants $0 < \lambda_1 \leq \lambda_2 < \infty$ so that

$$\lambda_1 |\xi|^2 \le A(x)\xi \cdot \xi \le \lambda_2 |\xi|^2$$
 for every $x, \xi \in \mathbb{R}^d$.

Let $\mu(dx) = \rho(x) dx$ with $\rho > 0$ so that $\rho + \rho^{-1} \in L^1_{loc}(\mathbb{R}^d; dx)$. Consider the following regular Dirichlet form $(\mathcal{E}, \mathcal{F})$ on $L^2(\mathbb{R}^d; \mu)$:

$$\mathcal{E}(f,f) = \int_{\mathbb{R}^d} A(x) \nabla f(x) \cdot \nabla f(x) \, \mu(dx), \quad f \in \mathcal{F}.$$

Jian Wang (Fujian Normal University)

Questions

- Carlen-Kusuoka-Stroock (1987): However, it is often important to work with a discrete time parameter; and so in the present section we develop the discrete-time analogs of the results in section 2. Unfortunately, we do not know how to extend the results of section 3 to this setting.
- Heat kernel estimates for degenerate parabolic equations.

Example 1

let A(x) be a symmetric measurable matrix-valued function on \mathbb{R}^d such that there are some constants $0 < \lambda_1 \leq \lambda_2 < \infty$ so that

$$\lambda_1 |\xi|^2 \le A(x)\xi \cdot \xi \le \lambda_2 |\xi|^2$$
 for every $x, \xi \in \mathbb{R}^d$.

Let $\mu(dx) = \rho(x) dx$ with $\rho > 0$ so that $\rho + \rho^{-1} \in L^1_{loc}(\mathbb{R}^d; dx)$. Consider the following regular Dirichlet form $(\mathcal{E}, \mathcal{F})$ on $L^2(\mathbb{R}^d; \mu)$:

$$\mathcal{E}(f,f) = \int_{\mathbb{R}^d} A(x) \nabla f(x) \cdot \nabla f(x) \, \mu(dx), \quad f \in \mathcal{F}.$$

Off-diagonal heat kernel estimates for large time

- The state space (\mathcal{X}, ρ, μ) satisfies the VD and RVD conditions. Let ϕ be an increasing function on $[0, \infty)$ with $\phi(0) = 0$ and satisfying the weak scaling property.
- Let $(\mathcal{E},\mathcal{F})$ be a strongly local Dirichlet form on $L^2(\mathcal{X};\mu)$ so that
 - (i) (Faber-Krahn inequality) There exist constants $c_0, \nu > 0$ and $R_0 \ge 0$ such that for any ball $B := B(x_0, R)$ with $x_0 \in \mathcal{X}$ and $R > R_0$ and for any open set $D \subset B$,

$$\lambda_1(D) \ge \frac{c_0}{\phi(R)} \left(\frac{\mu(B)}{\mu(D)}\right)^{\nu}.$$

where $\lambda_1(D)$ is the principal Dirichlet eigenvalue.

(ii) There is a constant $c_* > 0$ such that for any cut-off function $\psi \in \mathcal{F}_b$ for $B(x_0, r) \subset B(x_0, R)$ with $x_0 \in \mathcal{X}$ and $0 < r < R \mu$ -a.e. on $\mathcal{X} \setminus B(x, R)$),

$$\frac{d\Gamma(\psi,\psi)}{d\mu} \le \frac{c_*}{\phi(R-r)}.$$

イロト 不得下 イヨト イヨト 二日

Theorem 4 (Chen and W., 21+)

Under the assumptions above, there exists a properly exceptional set $\mathcal{N} \subset \mathcal{X}$, and the semigroup $(P_t)_{t\geq 0}$ associated with $(\mathcal{E}, \mathcal{F})$ has a transition density function p(t, x, y) that is defined on $(2T_0, \infty) \times (\mathcal{X} \setminus \mathcal{N}) \times (\mathcal{X} \setminus \mathcal{N})$ with $T_0 := \phi(2R_0)$ such that there is a constant $c_1 > 0$ so that for all $t > 2T_0$ and $x, y \in \mathcal{X} \setminus \mathcal{N}$,

$$p(t, x, y) \le \frac{c_1}{\sqrt{V(x, \phi^{-1}(t))V(y, \phi^{-1}(t))}} \left(1 + \frac{d_{\mathcal{E}}(x, y)^2}{4t}\right)^{(1+\nu)/\nu} \exp\left(-\frac{d_{\mathcal{E}}(x, y)^2}{4t}\right)$$

where

$$d_{\mathcal{E}}(x,y) := \sup \left\{ \varphi(x) - \varphi(y) : \varphi \in \mathcal{F} \cap C_c(\mathcal{X}) \text{ with } \Lambda(\varphi)^2 \le 1 \right\}$$

and

$$\Lambda(\varphi) := \left\| \frac{d\Gamma(\varphi,\varphi)}{d\mu} \right\|_{\infty}^{1/2}$$

Jian Wang (Fujian Normal University)

(日) (同) (三) (三)

Thank you!

• • • • • • • •